4 research outputs found

    ADAPTIVE WAVELETS SLIDING MODE CONTROL FOR A CLASS OF SECOND ORDER UNDERACTUATED MECHANICAL SYSTEMS

    Get PDF
    The control of underactuated mechanical systems (UMS) remains an attracting field where researchers can develop their control algorithms. To this date, various linear and nonlinear control techniques using classical and intelligent methods have been published in literature. In this work, an adaptive controller using sliding mode control (SMC) and wavelets network (WN) is proposed for a class of second-order UMS with two degrees of freedom (DOF).This adaptive control strategy takes advantage of both sliding mode control and wavelet properties. In the main result, we consider the case of un-modeled dynamics of the above-mentioned UMS, and we introduce a wavelets network to design an adaptive controller based on the SMC. The update algorithms are directly extracted by using the gradient descent method and conditions are then settled to achieve the required convergence performance.The efficacy of the proposed adaptive approach is demonstrated through an application to the pendubot

    Analysis of output voltage ripple for dual randomized PWM buck converter operating in continuous and discontinuous conduction modes

    Get PDF
    Dual Randomized Pulse Width Modulation (DRPWM) is renowned for its better effectiveness than Simple Randomized Pulse Width Modulation (SRPWM) in reducing conducted Electro-Magnetic Interferences (EMI) in power converters. However, the introduction of low-frequency ripples into the output voltage by dual randomization has not yet been addressed; this effect is investigated in this paper for a buck converter operating in both the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM). First, the modulating principle is presented. Then, a general analytical expression for power spectral density (PSD) of the input current is derived and validated for the proposed DRPWM scheme for both the CCM and DCM. A comparison of the PSDs of the input current for all RPWM schemes in both the CCM and DCM shows the PSD spreading effectiveness of the dual scheme as compared to simple schemes. Finally, the low-frequency output ripple is analysed using the PSD of output voltage. The results reveal that the output voltage ripple is affected by all the randomized schemes in both the CCM and the DCM. Also, the dual scheme (RCFM-RPPM) introduces the highest low-frequency voltage ripple, especially in the CCM and for low duty cycles. In DCM, the RPPM scheme gives the lowest voltage ripple, while the RCFM scheme gives the lowest voltage ripple in the CCM. The results are confirmed by both theory and simulations

    Double-gate MOSFET model implemented in VerilogAMS language for the transient simulation and the configuration of ultra low-power analog circuits

    Get PDF
    This paper deals with the implementation of a DCand AC double-gate MOSFET compact model in the VerilogAMS language for the transient simulation and the configurationof ultra low-power analog circuits. The Verilog-AMS descriptionof the proposed model is inserted in SMASH circuit simulator forthe transient simulation and the configuration of the Colpittsoscillator, the common-source amplifier, and the inverter. Theproposed model has the advantages of being simple and compact.It was validated using TCAD simulation results of the sametransistor realized with Silvaco Software

    Double-gate MOSFET Model Implemented in Verilog-AMS Language for the Transient Simulation and the Configuration of Ultra Low-power Analog Circuits

    No full text
    This paper deals with the implementation of a DC and AC double-gate MOSFET compact model in the Verilog-AMS language for the transient simulation and the configuration of ultra low-power analog circuits. The Verilog-AMS description of the proposed model is inserted in SMASH circuit simulator for the transient simulation and the configuration of the Colpitts oscillator, the common-source amplifier, and the inverter. The proposed model has the advantages of being simple and compact. It was validated using TCAD simulation results of the same transistor realized with Silvaco Software
    corecore